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Abstract

The purpose of our research was to accurately model
the spread of the disease COVID-19. To do this, we
used the Susceptible-Infectious-Recovered (SIR) model
and applied it to several types of social network graphs
in the programming language R. We adjusted the av-
erage number of edges between nodes, mirroring the
number of close contacts an individual can spread
the disease to, which allowed us to simulate non-
pharmaceutical interventions that governments used to
limit the spread of the virus.

The SIRS model

A common model in epidemiology is the SIR model.
It is a compartmental model, meaning that each indi-
vidual in the population must be a member of one of
the model’s compartments. In the most basic cases,
the compartments are Susceptible (the individual can
contract the disease), Infectious (the individual has the
disease and can spread it to others), and Recovered (the
individual is immune to the disease)[1, 2]. To more ac-
curately reflect COVID-19, we decided to adapt the SIR
model to the SIRS model. The SIRS model takes into
account the fact that individuals may become suscep-
tible to the disease again after recovery, meaning that
they do not have lifelong immunity.

Figure: An illustration of the compartments of the SIRS model.

Graph Generation

Social network graphs can be used to model the
spread of diseases by using nodes and edges to rep-
resent individuals and the relationships between them.

Figure: An example of
a simple social network

The average number of people in-
fected individuals may come into
contact with is represented by
the degree distribution. Epidemic
modelling with these networks
means that governments can de-
cide what measures to take based
on predictions of what a disease will do next [3].

Random network generation allow scientists to create
random graphs, where each node has a random number
of edges with other randomly selected nodes [4].

In the Erdős–Rényi model, graphs with a fixed set of
vertices and edges are all equally likely [4]. There
are 2 main variants of this model. In the G(n,
M) variant, a graph is chosen uniformly at random

Figure: Graph generated with
the Erdős–Rényi model.

from the collection of all
possible graphs that have
n nodes and M edges.
In the G(n, p) model, a
graph is made by con-
necting nodes randomly.
Each edge has probabil-
ity p to be included in
the graph, independent of
other edges [4].

The Barabási–Albert model is a scale free model [5],

Figure: Graph generated with
the Barabási-Albert model

which means there are hubs
(nodes with a very high num-
ber of connections to other
nodes) rather than all the
nodes forming connections at
random. This occurs due
to preferential attachment,
where nodes with more edges
are more likely to form new
edges with other nodes as the
graph is generated.

The stochastic block model is another ex-
ample of a random graph generation model,

Figure: Graph generated with the
stochastic block model

but it is characterised
by nodes being in sub-
sets known as communi-
ties that are connected
by particular edge densi-
ties. In other words, edge
densities may be higher
within rather than be-
tween these communities
[6].

Methodology

We used R to combine the SIRS model and social net-
works. At the start, the user selects the type of graph
generation and the values of several variables such as
the total number of nodes and the probability of infec-
tion. The following flowchart illustrates the algorithm
at each time step.

Results

Graph number 1 2 3

Generation Type Erdős–Rényi Barabási–Albert stochastic block

Number of nodes 750 750 750

Prob infection 0.2 0.2 0.2

Prob recovery 0.3 0.3 0.3

Recovery time 14 14 14

Susceptibility time 90 90 90

Edge density 0.0097944 0.0053298 0.0035427

Number of edges 2751 1497 917

ρ 328 293 4

τ 31 27 14

Table: ρ is the maximum number of infectious nodes in a given
time step and τ is the time step at which the number of
infectious nodes is maximum.

The table illustrates how different graph generation al-
gorithms result in graphs of various edge densities.
The Erdős-Rényi graph has the highest edge density as
it represents a network with no measures taken to limit
the number of contacts between nodes.
The Barabási-Albert graph has a lower edge density as
it represents a scenario where most people follow lock-
down procedure.
The stochastic block model graph has the lowest edge
density as it represents an ideal lockdown scenario,
where every member of the population obeys the re-
strictions.
Accordingly, the number of edges in the Erdős-Rényi
graph is the highest, followed by the Barabási-Albert
graph and then the stochastic block model graph.

Conclusions

The Erdős-Rényi model was used to generate a graph
which represents a situation where no government in-
terventions have taken place and all individuals have a
large number of contacts. This resulted in the number
of infectious individuals increasing rapidly, as the high
edge density means one infectious individual can spread
the disease to many susceptible individuals, who can in
turn infect many others.

The Barabási-Albert graph illustrates a scenario where
a lockdown causes individuals to reduce their close con-
tacts, but a small number of individuals violate regu-
lations, forming hubs around them where edge density
is higher. Initially disease spread is low, however once
a node at the centre of a hub becomes infectious, it
is able to infect a large number of other individuals.
Only 5% fewer individuals were infected compared to
the Erdős-Rényi model, showing lockdowns are ineffec-
tive when violated, even by a small number.

The stochastic block model depicts a ”perfect” lock-
down scenario where all population members signifi-
cantly reduce contact, with some nodes isolated to
reflect individuals self-isolating. This scenario shows
a slower disease spread and lower maximum infected
nodes. This is consistent with real observations, as
individuals still mixed with others for food shopping,
exercise, and healthcare, allowing an avenue of transfer
for the disease.

To summarise, the disease spreads more rapidly if there
is a large number of contacts between nodes. There-
fore, non-pharmaceutical interventions such as lock-
downs are effective at limiting the spread of COVID-
19, provided they are adhered to by the majority of the
population.
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